Chemicals and Gases in the Decade of Materials for the Semiconductor Industry

Jim Harrison
Intel Corporation

Our Business Environment

- Increasing Global development & manufacturing
- Downward price pressure
- Increasing chip manufacturing complexity
- Increasing environmental regulations

Intel Response: Invest for Innovation

World's first 300 mm silicon research lab

- Dedicated space for our most advanced and/or speculative silicon technologies
- 115K sq ft research building
 - ~ 56K sq ft of class 1 clean room at build-out - 28K sq ft in phase 1
 - Clean room link to development fabs

Intel Response: Innovate per Moore's Law

Process Name P856 P858 Px60 P1262 P1264 P1266 P1268 1st Production 1997 1999 2001 2003 2005 2007 2009 .25µm .18µm .13µm 90nm 65nm 45nm Lithography **32nm** .20μm .13μm <70nm <50nm <35nm <25nm <18nm Gate Length Wafer Size (mm) 200 200 200/300 300 300 300 300 Manufacturing Research Development

"New technology generation every 2 years"

- •2x die per wafer
- •1/2 transistor cost
- 2x microprocessor speed

Intel Response: Embrace the age of nanotechnology

emiconductor Equipment and Materials Internationa

What is Nanotechnology

- Structures measured in nanometers
 - Less than 0.1-micron (100nm)
- New materials and device structures
 - Incrementally changing silicon technology base
- Materials manipulated on atomic scale
 - In one or more dimensions
- Increasing use of self-assembly
 - Using chemical properties to form structures

Intel's Innovation Challenge's

Interconnect

- Low K Dielectric
- Resist Removal on Low K
- Improved EM and Resistivity

Transistors

- •High K Dielectric
- •Novel "Silicon"
- Print smaller Dimensions

Intel Transistor Innovation

130nm Node

Industry-leading transistor performance on Intel's 90 nm process :

-1.2 nm gate oxide Industry Thinnest

Strained silicon Industry first HVM

90nm Node

65nm Node

45nm Node

32nm Node

15nm Prototype (Production in 2009)

Tri-gate

Transistor Scaling Perspective

Transistor for 90nm process

Source: Intel

Influenza virus

Source: CDC

New Materials, Devices Extend Si Scaling

Changes Made

Gate
Silicide
added

Channel
Strained
silicon

Transistor

Source: Intel

Future Options

High-k gate dielectric

New transistor structure

Nanotechnology for Gate Dielectrics

Integration is the key challenge

Crafting Films with Atomic Layer Deposition

Semiconductor Equipment and Materials International

Nanotechnology Decade is the Materials Decade

Specialty materials evaluated

-2001 hundreds of materials

-2003 thousands of materials

Chem & Gas Solutions Must

- Meet performance requirements
- Consistently deliver Statistically equivalent product
- Have a Secure Global Supply
- Deliver Global Service
- Pricing consistent with end product model
- Be Safe & be recognized safe
- Be Green and be recognized green

Support Request

- Utilize Chem & Gas industry core competency to enable our success
- Closer collaboration --- many solutions will be dependent on our "architecture"
- Proactive management of the myriad of Environmental legislation and concerns everywhere.

SIA Partners PFC Emissions

EU CHEMICALS PROGRAM

- EU implementing a broad new regulatory system which proposes major restrictions to using new and existing chemicals
 - No unacceptable risk during life cycle determined before chemical is introduced (or continues) in use – requires third party review
 - Chemicals of "high concern" subject to public disclosure

IMPLICATIONS

- Geographical disparity in use versus global scope creep
- Time to authorization delays estimate of 6-12 months compared to non-EU programs
 - Increase cost of chemicals and gases
 - Innovation rate different in EU vs ROW
- "Green" lists (between 1-7) would impact some (or many) new and existing process chemicals
- I.P. on new and novel materials may be jeopardized

Further discussion Opportunity: 7:00 PM Terrace Room

